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V. Hizhnyakov, H. Kaasika, and I. Tehver

Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia

Received 2 May 2002

Published online 31 July 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. A nonperturbative theory of the multiphonon relaxation of a localized vibrational mode, caused
by a high-order anharmonic interaction with the nearest atoms of the crystal lattice, is proposed. It relates
the rate of the process to the positive frequency part of the time-dependent non-stationary displacement
correlation function of atoms. The nonlinear integral equation for this function is derived and solved numer-
ically. We have found that the rate exhibits a critical behavior: it sharply increases near a specific (critical)
value(s) of the interaction; the corresponding dependence is characterized by the critical index k − 1, where
k is the number of the created phonons.

PACS. 63.50.+x Vibrational states in disordered systems – 71.23.An Theories and models; localized states

1 Introduction

Physical processes in solids usually involve the relaxation
of the vibrational energy. The vibrational quanta of light
impurity molecules in crystals may exceed many times the
maximal energy of phonons. In such a case the energy re-
laxation of a molecule takes place as a multiphonon emis-
sion. Pulse laser sources give a possibility to study these
processes in the time domain (see, e.g. [1–3] and the ref-
erences therein). If one considers the relaxation of lower
vibrational levels, then the interaction of the molecular
vibration with phonons is usually weak and the process
can be explained in terms of a standard perturbation the-
ory [4–9]. However, modern methods allow one to excite
molecules to very high vibrational levels [3]. In such cases
the anharmonic interaction is strong. To interpret the re-
sults of measurements in these cases, a nonperturbative
theory of multiphonon relaxation is needed. The goal of
this communication is to propose such a theory.

When considering the decay of a nonstationary state
of a quantum subsystem interacting with the medium,
one usually proceeds from the calculation of the time de-
pendence of the characteristics of the subsystem (e.g. its
density matrix). Here we apply another method, which
is based on the consideration of the rate of creation of
phonons in a nonstationary state (here in the excited state
of the localized mode). The method was proposed in [10]
for two phonon relaxations of a classical local mode; in [11]
it was extended to quantum transitions between the vibra-
tional levels caused by cubic anharmonicity. According to
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this theory the transition rate is strongly enhanced near
the critical value(s) Vcr of the nondiagonal vibronic inter-
action V and it is remarkably reduced when this interac-
tion is strong (above Vcr). This kind of dependence of a
two-phonon relaxation on V was observed in [12], where
a sharp maximum of the relaxation rate at vibrational
level number n = 22 of a Xe∗2 molecule was observed in a
hot luminescence spectrum of a self-trapped exciton in a
solid Xe (in this case V ∝ √n).

To explain the idea of the method [10,11] let us con-
sider a two-phonon decay of a highly excited local mode
caused by the interaction Ĥint = Q̂

∑
ii′ V3,ii′ x̂ix̂i′ , where

V3,ii′ are the cubic anharmonicity interaction parame-
ters, Q̂ is the coordinate operator of the mode, x̂i =√
~/2ωi(âi + â+

i ) are the coordinate operators of the
phonons, âi and â+

i are the initial destruction and cre-
ation operators. The highly-excited mode can be consid-
ered classically. In this approximation the phonon Hamil-
tonian takes the form

Ĥ ' ~
∑
i

ωi(â+
i âi + 1/2) +Q(t)

∑
ii′

V3,ii′ x̂ix̂i′ ,

where Q(t) is the time-dependent classical coordinate of
the mode. This Hamiltonian can be diagonalized by stan-
dard methods of local dynamics. This is achieved by
means of the new, time-dependent destruction (b̂j,t) and
creation (b̂+j,t) operators of phonons. The latter are de-
termined by the time-dependent Bogolubov transforma-
tion b̂j,t =

∑
i(µji,tâi + νji,tâ

+
i ) (for the expressions for

µji,t and νji,t see in [10]). For a large time t as com-
pared to the reciprocal frequency of the phonons ω−1

i the
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transformation coefficients of phonon operator simplify
to [11] µji,t ' δjiµi,t, νji,t ' δjiνi,t so that

b̂i,t ' µi,t âi + νi,t â
+
i ; (1)

where |µi,t|2 = 1+ |νi,t|2. One can see that the initial zero-
point state of phonons, |0〉, is not the zeroth state of the
operators b̂i,t. This means that phonons are generated in
the lattice. The number of created phonons for the normal
mode i at T = 0 equals ni,t = |νi,t|2. This allows one to
find the rate of the energy loss (relaxation) of the mode
as follows:

Ė = (~ωl/k)
∑
i

d|νi,t|2/dt (2)

(here k = 2 is the number of phonons emitted for each
quantum ~ωl of the mode). The effect of temperature can
be included in a standard way by adding the stimulated
transitions. The described approach to relaxation holds
for an arbitrary interaction as far as the dependence of
|νi,t|2 on time is slow as compared to the characteristic
phonon frequency ω̄.

From the given expression for Ė it follows that, in
fact, one does not need the full knowledge of the oper-
ator transformation (i.e., one does not need to know the
complex parameters µi,t and νi,t); it suffices to find |νi,t|2.
To obtain the latter parameter, one does not obligato-
rily need to diagonalize the Hamiltonian. It is much easier
to obtain this parameter from the ∼ eiωiτ (negative fre-
quency) term of the large-time asymptotic form of the
phonon correlation function Di(t, τ) = 〈0|x̂i(t+ τ)x̂i(t)|0〉
with t averaged over a vibrational period. Indeed, taking
x̂i(t) = (~/2ωi)(b̂+i,teiωit + b̂i,te−iωit), where the operator
b̂i,t is given by equation(1), one finds

Di(t; τ) ' Di(τ) = (~/2ωi)
(
|µi,t|2e−iωiτ + |νi,t|2eiωiτ

)
.
(3)

The terms ∝ e±2iωit drop out when averaging t over a vi-
brational period. For what follows it is essential to note
that, under rather general assumptions, the asymptotic
phonon correlation function Di(t, τ) at large times has the
form (3) also in the case when the interaction Hamiltonian
comprises more than two phonon operators and when the
Hamiltonian cannot be diagonalized [11,13]. This allows
one to apply the described method also for the description
of multiphonon relaxation caused by higher-order anhar-
monicities.

2 Multiphonon emission

Let us consider first the decay of a strongly-excited local
mode due to a simultaneous emission of k ≥ 2 phonons.
The Hamiltonian of the system under consideration is

Ĥ = Ĥ0 + Ĥint, Ĥ0 =
∑
i

~ωi(â+
i âi + 1/2),

Ĥint = Q̂
∑
m

Vm,k q̂
k
m. (4)

Here Ĥint is the anharmonic interaction in the
collinear configurational approximation [7,9], Vm,k =√
nl~/2ωlU (k+1)

m . U (k)
m are the parameters of the k′th or-

der anharmonicity, q̂m =
∑
i eimx̂i are the mutually or-

thogonal displacement operators of the host atoms with
respect to the atom(s) of the mode (

∑
i eimeim′ = δmm′).

We take into account that the strongly-excited mode can
be considered classically and replace the operator Q̂ by
Q(t) ' A cosωlt, where A is the initial amplitude of the
mode. Then

Ĥint ' A cosωlt
∑
m

Vm,k q̂
k
m.

This interaction Hamiltonian describes the k-phonon
emission due to a periodical local field.

2.1 Phonon correlation function

To calculate the rate of the multiphonon emission, let us
consider the phonon correlation function Di(t). We pro-
ceed from the equation of motion of a phonon

¨̂xi(t) + ω2
i x̂i(t) + keiVkQ(t)q̂k−1(t) = 0

(the subscript m is omitted); its integral form reads:

x̂i(t) ' x̂0i(t)− kēiAVk

×
∫ t

0

dt1 sin(ωi(t− t1))q̂k−1(t1) cosωlt1, (5)

where ēi = ei/ωi, x̂0i(t) = (~/2ωi)(âie−iωit + â+
i eiωit).

Inserting (5) into (3), one gets

Di(t; τ) ' (~/2ωi)e−iωiτ +
(
k2V 2

k A
2ē2
i /4
)

×
∫ t+τ

0

dt1
∫ t

0

dt2Dk−1(t1, t2)

× cos (ωi(t1 − t2 − τ)) cos (ωl(t1 − t2)), (6)

where Dk−1(t1, t2) =
〈
0|q̂k−1(t1)q̂k−1(t2)|0

〉
is the multi-

particle displacement correlation function. Here we took
into account the relations

cosωlt1 cosωlt2 = [cos (ωl(t1 + t2)) + cos (ωl(t1 − t2))]/2,

sin (ωi(t+ τ − t1)) sin (ωi(t− t2)) = [cos (ωi(t1 − t2 − τ))
− cos (ωi(2t+ τ − t1 − t2))]/2

and neglected fast-oscillating terms having the fac-
tors cos (ωl(t1 + t2)), cos (ωl(t1 + τ)), cosωlt2 and
cos (ωi(2t+ τ − t1 − t2)) under the integrals since at
large t these terms drop out when averaging t over a
vibrational period.

The function Dk−1(t1, t2) under the integral (6) essen-
tially differs from zero for |t1 − t2| . (k − 1)Γ � t where
(k−1)Γ is the characteristic width of (k−1)-phonon tran-
sitions (Γ is the characteristic width of the phonon spec-
trum). Therefore in the large time limit t� τ this integral
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is ∝ t; this allows one to replace the upper limit t+τ by t.
Then the residual τ dependence of the integral in equa-
tion (6) is given by the factor cos (ωi(t1 − t2 − τ)), i.e.
the dependence on τ of the phonon correlation function
indeed has the form (3). The factor of the ∝ eiωiτ -term
equals

|νi,t|2 '
A2V 2

k e
2
i

4~ωi

∫∫ t

0

dt1dt2eiωi(t2−t1)

× cos (ωl(t2 − t1))Dk−1(t1, t2). (7)

The derived relation holds if the rate of the process is
sufficiently small as compared to kΓ . The fact that in this
case equation (3) holds also for k > 2 means that phonons
remain almost harmonic. This allows one to use in (7) the
pair correlation approximation

Dk−1(t1, t2) ≈ (k − 1)!Dk−1(t1, t2)

where D(t, t′) = 〈0|q̂(t)q̂(t′)|0〉 is the displacement pair
correlation function. Here the same time pairings are ne-
glected, as they give contribution to k − 2, k − 4, . . .
–phonon transitions and, therefore, result in the renor-
malization of the anharmonic constants Vk. This renor-
malization is usually small but it can be incorporated in
the theory if needed.

Note that the validity of equation (3) with a non-zero
value of |νi,t| means the existence of the anomalous cor-
relations 〈b̂2it〉=νi,tµi,t. Unlike a superconducting state of
a metal, which is also characterized by the existence of
anomalous correlations, here these correlations depend on
time.

2.2 Rate of energy loss

To find the rate of the energy loss of the mode, one should
insert equation (7) into equation (2). Taking into account
the integral relation∫∫ t

0

dt1dt2 =
∫ t

0

dt′
∫ t′

−t′
dt′′,

where t′ = (t1 + t2)/2 and t′′ = t1 − t2, and replacing
the limits ±t′ by ±∞ (which can be done in the case
under consideration t, t′ � 1/kΓ ), one gets in the pair
correlation approximation

Ė ' (A2k!V 2
k ωl/4~)

∫ ∞
−∞

dt eiωlt d0(t)Dk−1(t), (8)

where d0(t) =
∑
i(~/2ωi)e2

i e
−iωit. Thus, in order to find

the rate of the nonradiative transitions one needs to cal-
culate the displacement correlation function D(t). If the
anharmonic interaction is weak, then D(t) ≈ d0(t). In this
approximation the equation (8) coincides with the corre-
sponding equation of the standard time-dependent per-
turbation theory which gives

Ė(0) ' (A2k!V 2
k ωl/4~)

∫ ∞
−∞

dt eiωlt dk0(t).

2.2.1 Displacement correlation function

To get beyond the perturbation theory we consider the
equation of motion for the displacement operator(s) q̂.
From (5) it follows that

q̂(t) = q̂0(t)− kAVk
∫ t

0

dt1G(t− t1)q̂k−1(t1) cosωlt1,

where q̂0(t) =
∑
i eix̂0i(t), G(t) = θ(t)

∑
i(e

2
i /ωi) sinωit

is the Green function of the lattice dynamics [14], θ(t) is
the Heaviside step-function. By using this equation for the
first operator q̂(t1) under the integral, one gets

q̂(t) = q̂0(t)− kAVk
∫ t

0

dt1G(t− t1)
[
q̂0(t1)− kAVk

×
∫ t1

0

dt2G(t1−t2)q̂k−1(t2) cosωlt2
]
q̂k−2(t1) cosωlt1.

Let us insert this equation into the displacement corre-
lation function D(t, t′) = 〈0|q̂(t)q̂(t′)|0〉 and apply once
again the pair correlation approximation. In this approx-
imation

〈0|q̂k−1(t2)q̂k−2(t1)q̂(t′)|0〉 ≈ (k − 1)!D(t2, t1)k−2D(t2, t′)

(the same time pairings are neglected). As a result, we
obtain the following integral equation

D(t, t′) ' d∗(t, t′) + Ṽ 2
k

∫ t

0

dt1
∫ t1

0

dt2 eiωl(t2−t1)G(t− t1)

×G(t1 − t2)Dk−2(t2, t1)D(t2, t′), (9)

where Ṽk = VkA
√
kk!/2, d∗(t, t′) = 〈0|q̂0(t)q̂(t′)|0〉 =

〈0|q̂(t′)q̂0(t)|0〉∗. The terms ∼ q(0)(t1) under the integrals
lead to same time pairing; they are small and therefore ne-
glected; the terms ∼ eiωl(t1+t2) are also neglected as they
oscillate fast and therefore give also a very small contri-
bution. Analogously one finds

d(t, t′) ' d0(t− t′) + Ṽ 2
k

∫ t

0

dt1
∫ t1

0

dt2 eiωl(t2−t1)G(t− t1)

×G(t1 − t2)Dk−2(t2, t1) d(t2, t′). (10)

2.2.1.1 Spectral representation

Taking into account that in the time interval under consid-
eration the functions D(t, t′) and d(t, t′) depend only on
the time difference, the above equations can be simplified
by means of the spectral representation

D(ω) =
∫ ∞
−∞

dteiωtD(t)

(and an analogous representation of d(t)). Indeed, when
using the transformations∫ ∞

0

dt
∫ t

0

dt1
∫ t1

0

dt2 =
∫ ∞

0

dt2
∫ ∞
t2

dt1
∫ ∞
t1

dt,∫ ∞
0

dteiωtD(t− t′) ' eiωt′D(ω),
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t′ � 1/kΓ , these equations in the spectral representation
take the form

D(ω) = d∗(ω) +G(ω)Ṽkgk(ω − ωl)ṼkD(ω),

d(ω) = d0(ω) +G(ω)Ṽkgk(ω − ωl)Ṽkd(ω),

where d0(ω) and G(ω) are the spectral representations of
d0(t) and G(t), respectively, and

gk(ω − ωl) =
∫ ∞

0

dt ei(ω−ωl)tG(t)Dk−2(−t). (11)

This gives

D(ω) = d0(ω)|1−G(ω)Ṽkgk(ω − ωl)Ṽk|−2. (12)

Within the given notations the rate of the energy loss
in the spectral representation takes the form:

Ė=
ωlṼ

2
k

k~

∫∫
···
∫
d0(ω1)

k∏
j=2

D(ωj)
dωj
2π

, (13)

where ω1 = ωl −
∑k
j=2 ωj . The expression under the inte-

gral gives a partial probability of the k-phonon transitions
at T = 0.

2.2.2 The rate of multiphonon transitions

Although the above-given expression for the rate of the
energy loss was derived for a classical mode, it is also
applicable for the description of the decay of energy levels.
Indeed, taking into account that the decay is due to the
k-phonon transitions between the adjoining levels nl and
nl − 1, we get for the rate of the k-phonon transitions
γk ≡ Ė/~ωl the following expression [13]:

γk ' (Ṽ 2
k /4k~2)

∫ ∞
−∞

dt eiωlt d0(t)Dk−1(t), (14)

where Ṽk = Vk
√
nlkk!~/2ωl and A =

√
2nl~/ωl. In the

case under consideration the rate of the generation of
phonons is small as compared to ω̄ and ωl. This means
that the account of all other levels, except nl and nl − 1,
does not give any remarkable contribution to the transi-
tion rate. Therefore the origin of the levels nl and nl−1 is
not essential, i.e. equation (14) is applicable not only for
the description of the k-phonon decay of high levels but
also of any excited level. In the case of small |Ṽk| one can
take D(t) ≈ d0(t). Then equation (14) coincides with the
one given by the Fermi golden rule for arbitrary nl.

Note that equation (14) does not include the finite
lifetime broadenings of the initial and final levels. To take
them into account one should add under the integral the
factor exp {−γ|τ |}, where γ is the sum of the decay con-
stants (rates) of these levels; the latter should be deter-
mined self-consistently.

2.2.3 Effect of temperature

The finite temperature effect can be described as usual:
one should take into account the stimulated tran-
sitions. As a result, one gets an additional factor
(1 − e−~ωl/kBT )

∏k
j=1(1 + n̄j) (which takes into con-

sideration phonon-induced transitions) [15,16,13], where
n̄j = 1/(e~ωj/kBT − 1). In the case of multiphonon tran-
sitions in a two-level system, the first factor should be
replaced by (1 + e−~ωl/kBT ) [13,15,16].

3 Discussion

Equations (11–14) give a solution of the problem: by solv-
ing the nonlinear integral equation (11), one finds gk(ω)
and D(ω), which allows one to calculate the rate γk. The
main properties of the solution are:
1. In the weak coupling limit D(ω) = d0(ω) and γk ∼ |Ṽk|2
in accordance with the perturbation theory. In the oppo-
site limit of a very strong coupling, as it follows from (12),
D ∼ |Ṽk|−4/(2k−3), which gives γk ∼ |Ṽk|−2/(2k−3); i.e.
γk → 0 if Ṽk → ∞ (see also [13] where an analogous
conclusion was made on the basis of some qualitative ar-
guments). This is the opposite behavior as compared to
the perturbation theory. Yet the interpretation of this sur-
prising result is straightforward – the multiphonon decay
is of a purely quantum-mechanical origin and, therefore,
it should disappear in the classical limit nl ∼ Ṽ 2

k →∞.
2. G(ω) is the sign-alternating complex function. There-
fore there are some frequencies ωcr for which the imagi-
nary part of the denominator in (12) turns to zero. Be-
sides, for some specific value(s) of the interaction Ṽk,cr
the real part of the denominator also vanishes at ωcr.
This means that γk has a sharp peak(s) at Ṽk,cr. To find
out how γk depends on Ṽk in the vicinity of Ṽk,cr we ex-
pand the denominator |R(ω)|2 in (12) near ωcr: |R(ω)|2 ≈
|R + i(ω − ωcr)R′|2 where R is real and R′ is imaginary.
This gives D(ω) ∼ [(Ṽk − Ṽk,cr)2 + (ω − ωcr)2|R′/R|2]−1.
If Ṽk → Ṽk,cr then D(τ) diverges like |Ṽk − Ṽk,cr|−1. This
means that γk also diverges like |Ṽk − Ṽk,cr |−k+1. Con-
sequently, the behavior of the system in the vicinity of
Ṽk,cr is critical; i.e. it resembles a phase transition. The
order parameter is connected with the mean field associ-
ated with the anomalous correlations, which is changed
stepwise on the transition. The critical index equals k−1.

4 Numerical example

As an example, we consider the multiphonon relaxation of
a local mode caused by an anharmonic interaction with a
narrow-phonon band. We suppose that the mode is local-
ized on an atom and take into account two diagonal ele-
ments of the Green function which stand for the contribu-
tion of two nearest atoms of the lattice to the interaction;
the non-diagonal elements are usually much smaller [14]
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and approximate the density of states of the phonon band
by the parabolic distribution

ρ(ω) = (3/4Γ )[1− (ω − ω1)2)/Γ 2]; |ω − ω1| < Γ � ω1;

ρ(ω) = 0 if |ω − ω1| ≥ Γ . Here ω1 is the mean frequency
and Γ is the half-width of the band.

By using the dimensionless frequency Ω = (ω−ω1)/Γ
and the time τ = tΓ , the equation (14) takes the form

γk =
2w2

kΓ

k

∫ ∞
0

dτd0(τ)Dk−1(τ),

where wk = (|Ṽk|/k~Γ )(~/2ω1)k/2 is the dimensionless
interaction parameter, D(τ) is the Fourier transform of
the function D(Ω). This function should be determined
from the following nonlinear equations:

gk(Ω) =
∫ ∞

0

dτeiΩτG(τ)∗Dk−2(τ), (15)

D(Ω) =
d0(Ω)

|1− w2G(Ω)gk(Ω)|2 , (16)

where d0(Ω) = 2ImG(Ω),

d0(τ) = iG(τ) = (3/2τ3)(sin τ − τ cos τ),

G0(Ω)=
3
4

[
(1−Ω2) ln

∣∣∣∣1−Ω1 +Ω

∣∣∣∣−2Ω+iπ(1−Ω2)θ(1−Ω2)
]
.

For small wk (smaller than wk,cr) the equations (15, 16)
can be solved by using the standard iteration procedure.
However, for wk > wk,cr this procedure diverges. In this
case the approximate solutions of the given equations have
been found by means of the following approximation:

D(Ω) = A
[
1−

(
Ω2 + c2

)β
/
(
1 + c2

)β]
;

parameters A, β and c have been found from the best fit of
the input and the output functions. The results of calcu-
lations of γk at T = 0 in dependence of the dimensionless
interaction parameters wk are given in Figures 1, 2. For
small wk � 1 the rates linearly increase with the w2

k (in
accordance with the Fermi golden rule). For larger wk this
dependence is changed to a superlinear one; the superlin-
earity increases with k. The rates have sharp peaks at
wk,cr . 1. Thereby, as expected from a general considera-
tion, γk ∝ |wk − wk,cr |−k+1 if γ →∞. However, only the
rates satisfying the condition γk � kΓ are consistent with
the assumptions of the theory. In the case of a high-order
multiphonon relaxation (k � 1) for large wk (larger than
wk,cr) the rate very slowly decreases with the increasing of
the interaction parameter (as w2/2(k−3)

k ) and is very high
(∼ Γ ) practically for all reasonable values of wk & wk,cr.

The temperature dependence of the rate in this model
is given by the factor (1− e−k~ω1/kBT )/(1− e−~ω1/kBT )k.

To clarify the question in which systems the described
effects could be expected to be observed we present an

Fig. 1. The dependence of the transition rates γk (in Γ units)
on the dimensionless interaction parameters wk below wk,cr.

0.001

0.01

0.1

1

0.01 0.1 1 10

w

γ/Γ

k=2
k=3
k=4

Fig. 2. The dependence of the rates γk (in Γ units) of two-
phonon (k = 2), three-phonon (k = 3) and four-phonon (k = 4)
transitions on the dimensionless interaction parameters wk.

estimation of wk. Supposing that atoms interact via the
Lennard-Jones potential, and taking into account that for
large k the main contribution to the anharmonic interac-
tion constants is given by the repulsive part r−12 of the
potential, one obtains

wk ∼
√
nl(k − 1)![(13 + k)!/13!](a0/r)k+1,

where a0 is the zero-point amplitude of the host atoms,
r is the distance to the nearest atom (see also [9], where an
analogous estimation is given). According to this formula,
in quantum crystals and in other crystals with a large
ratio a0/r ≥ 0.2, a value wk ∼ 1 can be reached for a
vibration level as low as nl . 10 (we remind that wk ∼√
nl). In the case of the Xe∗2 molecule in a Xe crystal,

studied in [12], M0/M = 2, a0/r ∼ 0.1 and this formula
gives w2 ∼ 1 for nl ≈ 20. This agrees well with the critical
number nl = 22 obtained experimentally in [12].
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5 Conclusion

In summary, we have developed a nonperturbative theory
of a multiphonon relaxation of a local mode, caused by
a high-order anharmonic interaction. The relaxation pro-
cess is characterized by time-dependent anomalous corre-
lations of phonons. The rate of the relaxation is expressed
through the positive frequency part of the nonstationary
displacement correlation functions. The nonlinear integral
equations for these functions have been derived and solved
numerically.

We have found that the relaxation rate exhibits a crit-
ical behavior: it is sharply increased near a specific (criti-
cal) value(s) of the interaction. The corresponding depen-
dence is characterized by the critical index k− 1, where k
is the number of the created phonons. In the close vicinity
of the critical point(s) the rate attains a very high value
comparable to the frequency of phonons. In the weak cou-
pling limit the obtained results agree with the predictions
of the standard perturbation theory.
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